Kan hyperspectrale remote sensing gebruikt worden voor vitaliteitsbepaling van individuele bomen? Een verkennend onderzoek

Kan hyperspectrale remote sensing gebruikt worden voor vitaliteitsbepaling van individuele bomen? Een verkennend onderzoek

28 november 2014 om 15:31 door Marie-Leen Verdonck, Frieke Van Coillie, Kris Vandekerkhove, Pieter Kempeneers, Robert De Wulf

50-4.PNG
Na een conventie van de VN over grensoverschrijdende luchtverontreiniging wordt sinds 1987 de vitaliteit van bossen in Vlaanderen opgemeten door het INBO in het kader van ICP Forests (Fischer et al. 2012; http://icp-forests.net/). Dat gebeurt door jaarlijks in het veld de vitaliteit te beoordelen van een aantal bomen in vaste proefvlakken. Binnen het HyperForestproject gingen we na in hoeverre het mogelijk is om deze beoordelingen te doen via hoge resolutie hyperspectrale beelden.

Bekijk PDF

Referenties:

Carter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Remote sensing, 15(3), 697-703

Carter G. A., Cibula W. G., & Miller, R. L. (1996). Narrow-band reflectance imagery compared with thermal imagery for early detection of plant stress. Journal of Plant Physiology, 148(5), 515-522

Cho, M. A., Skidmore, A. K., & Sobhan, I. (2009). Mapping beech (Fagus sylvatica L.) forest structure with airborne hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation, 11(3), 201-211

De Keersmaeker, L., Van de Kerckhove, P., Baeté, H., Walleyn, R., Christiaens, B., Esprit, M., & Vandekerkhove, K. (2005). Monitoringprogramma integrale bosreservaten: inhoudelijk programma en basishandleiding. Rapport IBW Bb R 2005.003

Devriendt F., Van Coillie F., De Wulf R. en Vandekerkhove K. (2012a). Mogelijkheden van nieuwe aardobservatietechnieken voor het bosbeheer in Vlaanderen. Bosrevue, 42, 12-16

Devriendt, F., Van Coillie, F., De Wulf, R., Bertels, L., Kempeneers, P., Vandekerkhove, K., & Morsdorf, F. (2012b). Classification of unmanaged forest reserves in Flanders (Belgium) at the tree crown level using airborne hyperspectral and LiDAR data. In 4th International conference on Geographic Object Based Image Analysis (GEOBIA 2012) (pp. 141-145)

Dobbertin, M. (2005). Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. European Journal of Forest Research, 124(4), 319-333

Eitel, J. U., Gessler, P. E., Smith, A., & Robberecht, R. (2006). Suitability of existing and novel spectral indices to remotely detect water stress in Populus spp. Forest Ecology and Management, 229(1), 170-182

Fischer, R., Waldner, P., Carnicer, J., Coll, M., Dobbertin, M., Ferretti, M., Hansen, K., Kindermann, G., Lasch-Born, P., Lorenz, M., Marchetto, A., Meining, S., Nieminen, T., Peñuelas, J., Reutio, P., Reyer, C., Roskamss, P., Sánchez, G., (2012). The condition of forests in Europe. 2012 Executive Report. ICP Forests, Hamburg

Gamon, J. A., Penuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote sensing of environment, 41(1), 35-4

Gehrig, M. (2004). Methoden zur Vitalitätsbeurteilung von Bäumen: vergleichende Untersuchungen mit visuellen, nadelanalytischen und bioelektrischen Verfahren (Doctoral dissertation).

Gitelson, A. A., & Merzylac, M. N. (1994). Spectral reflectance changes associate with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143, 286–292

Govender, M., Chetty, K., & Bulcock, H. (2007). A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water Sa, 33(2)

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote sensing of environment, 81(2), 416-426

Hilker, T., Coops, N. C., Coggins, S. B., Wulder, M. A., Brownc, M., Black, T. A., Nesic, Z., & Lessard, D. (2009). Detection of foliage conditions and disturbance from multi-angular high spectral resolution remote sensing. Remote Sensing of Environment, 113(2), 421-434

Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 663-666

Le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote sensing of environment, 89(1), 1-28

Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar Remote Sensing for Ecosystem Studies Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience, 52(1), 19-30

Maccioni, A., Agati, G., & Mazzinghi, P. (2001). New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Journal of Photochemistry and Photobiology B: Biology, 61(1), 52-61

Merton, R. N. (1998, January). Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. In Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop (pp. 12-16)

Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2), 337-354

Sioen, G. & Roskams, P. (2014). Bosvitaliteitsinventaris 2013. Resultaten uit het bosvitaliteitsmeetnet (Level I). Instituut voor Natuur- en Bosonderzoek, Brussel Sioen, G., Roskams, P., & Coenen, S. (2009). Bosvitaliteitsinventaris (2008). Resultaten van de kroonbeoordelingen in het bosvitaliteitsmeetnet. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2009 (10). Instituut voor Natuur- en Bosonderzoek, Brussel

White, J. C., Coops, N. C., Hilker, T., Wulder, M. A., & Carroll, A. L. (2007). Detecting mountain pine beetle red attack damage with EO‐ 1 Hyperion moisture indices. International Journal of Remote Sensing, 28(10), 2111-2121

Zhang, Y., Chen, J. M., Miller, J. R., & Noland, T. L. (2008). Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sensing of Environment, 112(7), 3234- 3247

Zarco-Tejada, P. J., Miller, J. R., Morales, A., Berjón, A., & Agüera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90(4), 463-476

Labels: